If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+18n-47=0
a = 1; b = 18; c = -47;
Δ = b2-4ac
Δ = 182-4·1·(-47)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-16\sqrt{2}}{2*1}=\frac{-18-16\sqrt{2}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+16\sqrt{2}}{2*1}=\frac{-18+16\sqrt{2}}{2} $
| 20-6u=3u+2 | | -20+7c-16=13c+18 | | 5.78=3.9+4x | | -4(2x-4)=10x-4 | | 3/36+4=2/b-4 | | 4(2x-4)=10x-4 | | -5.7g-16.52+17.7g=19.18+15.4g | | 6x+3=6+2x | | 4p−5(=p+6) | | -12+3z=-9z | | 553/43-9(6c-4-3)=34 | | -20+4p=20+6p | | 300-4.9x^2=0 | | 17+20-6s=-9s-11 | | 17+20-6a=-9a | | (3x+4)/7=-3 | | 4.9x^2+8x-300=0 | | 8(×+2)=2x+16 | | 5(x+3)=3(x-2) | | 5(x−11)−3x+40=71 | | 0=-16t^2+32t+180 | | (3h+4)/7=1 | | 14d=13d-5 | | -19s=-20s−17 | | -20-13q-15q=20-20q | | 2x+8/6+8=x-4 | | 0=-16t^2+169t+46 | | -5.28-11.4c=-2.6c | | 10x-38=4x-8 | | 4x^2-10x+21=0 | | -3(9-4n)-4=8n-9(n+12) | | 6x+12=6x-40.8 |